Generalized Linear Models

Dr. Mutua Kilai

Department of Pure and Applied Sciences

2024-01-25

Review and Introduction

- Let $y_1, ..., y_n$ denote n independent observations on a response.
- Treat y_i as a realization of a random variable Y_i
- In the general linear model we assume that

$$Y_i \sim N(\mu_i, \sigma^2)$$

• And we further assume that the expected value μ_i is a linear function

$$\mu_i = X_i' \beta$$

 The generalized linear model generalizes both the random and systematic component.

Components of Generalized Linear Models

- All generalized linear models have three components:
 - Random component
 - Systematic component
 - Link function

Random Component

- The random component of a GLM identifies the response variable Y and selects a probability distribution for it.
- Denote the observations on Y by $(Y_1, Y_2, ..., Y_n)$. Standard GLMs treat $Y_1, Y_2, ..., Y_n$ as independent.
- If the observations on Y are binary then we assume a binomial distribution for Y
- In some applications, each observation is a count. Then we have Poisson or Negative Binomial
- If each observation is continuous, we might assume a normal distribution for Y.

Systematic Component

- The systematic component of a GLM specifies the explanatory variables.
- These enter linearly as predictors on the right-hand side of the model equation.
- The systematic component specifies the variables that are the $\{x_j\}$ in the formula

$$\alpha + \beta_1 x_1 + \dots + \beta_k x_k$$

Link Function

- Denote the expected value of Y the mean of the probability distribution by $\mu = E(Y)$
- The link function specifies a function g(.) that relates μ to the linear predictors as

$$g(\mu) = \alpha + \beta_1 x_1 + \dots + \beta_k x_k$$

• The function $g(\mu)$ the link function connects the random and the systematic components.

The exponential Family

 We assume that observations come from a distribution in the exponential family with the following probability density function:

$$f(y_i; \theta_i, \phi) = \exp\left\{\frac{y_i \theta_i}{a(\phi)} + c(y_i, \phi)\right\} \tag{1}$$

- Here θ_i , ϕ are parameters and a(.), b(.) and c(.) are known functions.
- The θ_i and ϕ are location and scale parameters respectively.

Example 1: Normal Distribution

• The normal distribution is given as:

$$f(y_i, \theta_i, \phi) = \frac{1}{\sqrt{2\pi\sigma}} exp\{-\frac{1}{2\sigma^2}(y_i - \mu)^2\}$$

Which can be expressed as:

$$f(y_i, \theta_i, \phi) = \exp\left[-\frac{1}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2}(y_i^2 - 2y_i\mu + \mu^2)\right]$$

We can re-factor and have:

$$f(y_i, \theta_i, \phi) = \left(\frac{2\mu y_i - \mu^2}{2\sigma^2}\right) - \frac{1}{2}\left(\frac{y_i^2}{\sigma^2} + \log(2\pi\sigma^2)\right)$$

Solution Cont'd

$$\begin{array}{l} \bullet \ \ \theta_i = \mu, \phi = \sigma^2, a_i(\phi) = \phi, b(\theta_i) = \frac{\theta_i^2}{2}, c(y_i, \phi) = \\ \frac{1}{2} \left(\frac{y_i^2}{\sigma^2} + \log(2\pi\sigma^2) \right) \end{array}$$

- The mean is given as $E(y_i) = b'(\theta_i)$
- The variance $Var(y_i) = b''(\theta_i)a(\phi)$

Exercise 1: Poisson distribution

• The PMF of the Poisson distribution is given as:

$$f(y|\mu) = \frac{e^{-\mu}\mu^y}{y!}$$

 Show that the Poisson Distribution can be expressed as a member of exponential family and derive the mean and variance.

Exercise 2: Binomial distribution

• The PMF of the Binomial distribution is given as:

$$f(y|n,p) = \binom{n}{y} p^{y} (1-p)^{n-y}$$

 Show that the binomial Distribution can be expressed as a member of exponential family and derive the mean and variance.

Exercise 3

• The PMF of the Negative Binomial distribution is given as:

$$f(y|r,p) = \binom{r+y-1}{y} p^r (1-p)^y$$

 Show that the negative binomial Distribution can be expressed as a member of exponential family and derive the mean and variance.

Maximum Likelihood Estimation of GLM

- Unlike for the general linear model, there is no closed form expression for the MLE of β in general for GLMs.
- However all the GLMs can be fit using the same algorithm a form of iteratively re-weighted least squares
- Given an initial value for $\hat{\beta}$ calculate the estimated linear predictor $\hat{\eta}_i = x_i' \beta$ and use that to obtain the fitted values $\hat{\mu}_i = g^{-1}(\hat{\eta}_i)$. Calculate the adjusted dependent variable

$$z_i = \hat{\eta_i} + (y_i - \hat{\mu_i})(rac{d\eta_i}{d\mu_i})_0$$

Cont'd

Calculate the iterative weights

$$W_i^{-1}=(rac{d\eta_i}{d\mu_i})V_i$$

where V_i is the variance function evaluated at $\hat{\mu}_i$

• Regress z_i on x_i with weight W_i to give the new estimate of β

Thank You!