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Review and Introduction
• Let y1, ..., yn denote n independent observations on a response.
• Treat yi as a realization of a random variable Yi

• In the general linear model we assume that
Yi ∼ N(µi , σ2)

• And we further assume that the expected value µi is a linear
function

µi = X ′
i β

• The generalized linear model generalizes both the random and
systematic component.
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Components of Generalized Linear Models

• All generalized linear models have three components:
• Random component

• Systematic component

• Link function

Dr. Mutua Kilai | Generalized Linear Models 3/15



Random Component

• The random component of a GLM identifies the response
variable Y and selects a probability distribution for it.

• Denote the observations on Y by (Y1, Y2, ..., Yn). Standard
GLMs treat Y1, Y2, ..., Yn as independent.

• If the observations on Y are binary then we assume a binomial
distribution for Y

• In some applications, each observation is a count. Then we have
Poisson or Negative Binomial

• If each observation is continuous, we might assume a normal
distribution for Y.
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Systematic Component

• The systematic component of a GLM specifies the explanatory
variables.

• These enter linearly as predictors on the right-hand side of the
model equation.

• The systematic component specifies the variables that are the
{xj} in the formula

α + β1x1 + ... + βkxk
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Link Function

• Denote the expected value of Y the mean of the probability
distribution by µ = E (Y )

• The link function specifies a function g(.) that relates µ to the
linear predictors as

g(µ) = α + β1x1 + ... + βkxk

• The function g(µ) the link function connects the random and
the systematic components.
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The exponential Family

• We assume that observations come from a distribution in the
exponential family with the following probability density function:

f (yi ; θi , ϕ) = exp
{ yiθi

a(ϕ) + c(yi , ϕ)
}

(1)

• Here θi , ϕ are parameters and a(.), b(.) and c(.) are known
functions.

• The θi and ϕ are location and scale parameters respectively.
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Example 1: Normal Distribution
• The normal distribution is given as:

f (yi , θi , ϕ) = 1√
2πσ

exp{− 1
2σ2 (yi − µ)2}

• Which can be expressed as:

f (yi , θi , ϕ) = exp
[

− 1
2 log(2πσ2) − 1

2σ2 (y 2
i − 2yiµ + µ2)

]

• We can re-factor and have:

f (yi , θi , ϕ) =
(2µyi − µ2

2σ2

)
− 1

2

(y 2
i

σ2 + log(2πσ2)
)
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Solution Cont’d

• θi = µ, ϕ = σ2, ai(ϕ) = ϕ, b(θi) = θ2
i
2 , c(yi , ϕ) =

1
2

(
y2

i
σ2 + log(2πσ2)

• The mean is given as E (yi) = b′(θi)

• The variance Var(yi) = b′′(θi)a(ϕ)
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Exercise 1: Poisson distribution

• The PMF of the Poisson distribution is given as:

f (y |µ) = e−µµy

y !

• Show that the Poisson Distribution can be expressed as a
member of exponential family and derive the mean and variance.
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Exercise 2: Binomial distribution

• The PMF of the Binomial distribution is given as:

f (y |n, p) =
(

n
y

)
py(1 − p)n−y

• Show that the binomial Distribution can be expressed as a
member of exponential family and derive the mean and variance.
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Exercise 3

• The PMF of the Negative Binomial distribution is given as:

f (y |r , p) =
(

r + y − 1
y

)
pr(1 − p)y

• Show that the negative binomial Distribution can be expressed
as a member of exponential family and derive the mean and
variance.

Dr. Mutua Kilai | Generalized Linear Models 12/15



Maximum Likelihood Estimation of GLM

• Unlike for the general linear model, there is no closed form
expression for the MLE of β in general for GLMs.

• However all the GLMs can be fit using the same algorithm a
form of iteratively re-weighted least squares

• Given an initial value for β̂ calculate the estimated linear
predictor η̂i = x ′

i β and use that to obtain the fitted values
µ̂i = g−1(η̂i). Calculate the adjusted dependent variable

zi = η̂i + (yi − µ̂i)(
dηi

dµi
)0
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Cont’d

• Calculate the iterative weights

W −1
i = ( dηi

dµi
)Vi

where Vi is the variance function evaluated at µ̂i

• Regress zi on xi with weight Wi to give the new estimate of β

Dr. Mutua Kilai | Generalized Linear Models 14/15



Thank You!
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